Orbit types

Eccentricity a b Cartesian Form
Ellipse $0 \leq e<1$ $a>0$ Semi-minor axis: $b=a\sqrt{1-e^2}$ $x^2/a^2+y^2/b^2=1$
Parabola $e=1$ $a=\infty$ $b=0$ $y=x^2/4r_p$
Hyperbola $e>1$ $a<0$ Impact parameter: $b=-a\sqrt{e^2-1}$ $x^2/a^2-y^2/b^2=1$

Shapes and characteristics

Any conic section can be represented by two numbers.

This can be any two of these: $l$, $r_p$ and $e$.

$a$ should work most of the time, but it isn’t defined for parabolas

$r_a=a(1+e)$, the aphelion distance, only works for ellipses

$b=|a|\sqrt{|1-e^2|}$ only works if you know what it represents (semi-minor axis or impact parameter)

For all orbital types:

Total energy:

$$ E=-\frac{GMm}{2a} $$

Polar equation:

$$ r = \frac{l}{1+e \cos \theta} $$

Where $\theta$ is the true anomaly ($\theta=0$ at perihelion)

$l$ is the semi latus rectum and $r_p$ is the perihelion distance

$$ l= \begin{dcases} a(1-e^2) & \textrm{for } e \neq 1\\ 2 r_p & \textrm{for } e=1\end{dcases} $$

$$ r_p= a(1-e) \textrm{ for } e \neq 1 $$

$$ e=\frac{c}{a} \textrm{ for } e \neq 1 $$

Ellipse

ellipse.png